- Услуги
- Цена и срок
- О компании
- Контакты
- Способы оплаты
- Гарантии
- Отзывы
- Вакансии
- Блог
- Справочник
- Заказать консультацию
Пусть у нас есть две ценные бумаги с ожидаемыми доходностями Е1, Е2 и рисками σ1 и σ2 соответственно. Мы решили купить эти бумаги в количестве Х1 и X2 , где Х1 и Х2 (-∞ < Х1,2 < ∞) — доли в портфеле этих бумаг в денежном выражении. Какова будет ожидаемая доходность нашего портфеля Еp?
Вариация портфеля будет равна:
Если ρ12=1, то
Если ρ12 = 0, то
Если ρ12 = -1, то
Как видно, можно так подобрать пару ценных бумаг, что даже при большом риске обеих риск портфеля будет не очень велик. К сожалению, на практике найти пару с ρ12 = -1 не удалось еще, кажется, никому. Хотя поиски подобных пар бумаг происходят непрерывно.
Коэффициент детерминации aij = ρij и показывает, какая часть вариации доходности i-той ценной бумаги связана с вариацией доходности j-той ценной бумаги.
Пример. Пусть у нас есть две акции А и В. Доходность их характеризуется такими данными:
Тогда
Пусть ρAB=0. Тогда
Получаем уравнение параболы в осях (Ep, σp). При
Пусть ρAB=1. Тогда
Таким образом, за исключением специальных случаев, |р12| = 1, комбинационная кривая (рис. 11.4), соединяющая точки (σ1 , Е1) и (σ2, Е2), является выпуклой и лежит выше прямой, проходящей через эти точки.